作者单位
摘要
华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室,厦门 361021
提出一种通用式突变算子用于增强反馈式波前整形系统的调控效率,进而实现激光透过散射介质后的高效聚焦。为验证该突变算子提高聚焦效率的有效性,在经典优化算法,包括遗传算法、粒子种群算法、蚁群算法、模拟退火算法等四种算法的基础上引入突变算子,以优化结束后的增强因子和达到最高增强因子时的迭代周期数来表征聚焦效率。经过数值仿真和实验验证,该突变算子的引入使得四种经典优化算法的聚焦效率均得到大幅提升,增强因子提升了25%以上,同时迭代周期数减少了63%以上。当增加调控单元数量时,突变算子的高效性将更为显著。为进一步验证该突变算子的通用性,对二元振幅型调制以及多点聚焦进行了数值模拟分析,结果表明该突变算子有效增强了聚焦效率。该研究为反馈式波前整形的多种经典算法与多种调控方式提供了更高效的聚焦策略,实现了散射介质后更快更强的光斑聚焦,在光捕获、光遗传学等领域具有潜在的应用价值。
光场调控 波前整形 优化算法 散射介质 Optical modulation Wavefront shaping Optimization algorithm Scattering medium 
光子学报
2023, 52(6): 0629002
作者单位
摘要
华侨大学信息科学与工程学院福建省光传输与变换重点实验室,福建 厦门 361021
涡旋光具有特殊的螺旋相位因子,使用涡旋光进行通信编码能够极大地提高通信容量。实际通信环境的湍流、雾霾会导致涡旋光发生散射而形成散斑,这使得涡旋光通信的实际应用难度加大。因此,从散斑中准确高效地测量入射涡旋光的拓扑荷数对涡旋光通信具有重大意义。涡旋光经过散射介质之后形成的散斑场的特性与其拓扑荷数息息相关。基于深度神经网络高效的特征提取特点,采用分类神经网络实现了经过散射后的涡旋光拓扑荷数的测量,且测量准确率达到100%。
物理光学 涡旋光束 拓扑荷数 散射 图像分类 神经网络 
光学学报
2022, 42(14): 1426001
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
3 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan430074, China
4 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
In this study, a high-energy, temporally shaped picosecond ultraviolet (UV) laser running at 100 Hz is demonstrated, with its pulses boosted to 120 mJ by cascaded regenerative and double-pass amplifiers, resulting in a gain of more than 108. With precise manipulation and optimization, the amplified laser pulses were flat-top in the temporal and spatial domains to maintain high filling factors, which significantly improved the conversion efficiency of the subsequent third harmonic generation (THG). Finally, 91 mJ, 470 ps pulses were obtained at 355 nm, corresponding to a conversion efficiency as high as 76%, which, as far as we are aware of, is the highest THG efficiency for a high-repetition-rate picosecond laser. In addition, the energy stability of the UV laser is better than 1.07% (root mean square), which makes this laser an attractive source for a variety of fields including laser conditioning and micro-fabrication.
all-solid-state laser third harmonic generation ultraviolet laser 
High Power Laser Science and Engineering
2021, 9(3): 03000e38
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
3 School of Aerospace Engineering, Tsinghua University, Beijing100084, China
4 Department of Engineering Physics, Tsinghua University, Beijing100084, China
To reduce the seed length while maintaining the advantages of the cuboid KDP-type crystal, a long-seed KDP crystal with size $471~\text{mm}\times 480~\text{mm}\times 400~\text{mm}$ is rapidly grown. With almost the same high cutting efficiency to obtain third harmonic generation oriented samples, this long-seed KDP-type crystal can be grown with a shorter seed than that of the cuboid KDP-type crystal. The full width at half maximum of the high-resolution X-ray diffraction of the (200) crystalline face is 28.8 arc seconds, indicating that the long-seed KDP crystal has good crystalline quality. In the wavelength range of 377–1022 nm, the transmittance of the long-seed KDP crystal is higher than 90%. The fluence for the 50% probability of laser-induced damage (LID) is $18.5~\text{J}/\text{cm}^{2}$ (3 ns, 355 nm). Several test points survive when the laser fluence exceeds $30~\text{J}/\text{cm}^{2}$ (3 ns, 355 nm), indicating the good LID performance of the long-seed KDP crystal. At present, the growth of a long-seed DKDP crystal is under way.
KDP crystal long-seed rapid growth 
High Power Laser Science and Engineering
2020, 8(1): 010000e6

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!